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Abstract.  Atomistic molecular dynamics simulations have been used to calculate isothermal elastic 
properties for β-, α-, and δ-HMX.   The complete elastic tensor for each polymorph was determined at 
room temperature and pressure via analysis of microscopic strain fluctuations using formalism due to 
Rahman and Parrinello [J. Chem. Phys. 76, 2662 (1982)].  Additionally, the isothermal compression curve 
was computed for β-HMX for 0 ≤ p ≤ 10.6 GPa; the bulk modulus K and its pressure derivative K′ were 
obtained from two fitting forms employed previously in experimental studies of the β-HMX equation 
of state.  Overall, the results indicate good agreement between the bulk modulus predicted from the 
measured and calculated compression curves.  The bulk modulus determined directly from the elastic 
tensor of β-HMX is in significant disagreement with the compression curve-based results.  The 
explanation for this discrepancy is an area of current research. 

 
 

INTRODUCTION 
 
  This work is part of an ongoing effort to predict 
the thermophysical and elastic mechanical 
properties of high-explosive (HE) crystals and 
liquids using atomistic simulation techniques. In the 
case of HMX, we have reported calculations of the 
structural properties of the three pure crystal 
polymorphs,1,2 and the shear viscosity3 and thermal 
conductivity4 of the liquid phase.  These kinds of 
information are required as input to 
“mesomechanics models” in which the explosive 
crystallites and polymeric binder in a plastic-
bonded explosive (PBX) are resolved within a 
hydrodynamic simulation framework.5 
  In the present report we summarize calculations of 
the elastic properties of β- α-, and δ-HMX.  In 
particular, we apply formalism due to Rahman and 
Parrinello6 in which the elastic tensor is expressed 
in terms of fluctuations of the microscopic strain 
tensor obtained from an isothermal-isobaric (NpT) 
simulation.  For the case of β-HMX, we compare 

the calculated and measured isothermal 
compression curves (T=295 K, 0 ≤ p ≤ 10.6 GPa) 
and the initial bulk modulus K and pressure 
derivative K′=dK/dp to experimental values.  
Finally, we compare the bulk modulus determined 
in this way to the one predicted directly from the 
elastic tensor. 
 

COMPUTATIONAL DETAILS 
 
  Our studies were performed in the isothermal-
isobaric (NpT) statistical ensemble.  Periodic 
boundary conditions corresponding to a general, 
triclinic primary cell were used.  The simulations 
were performed using the same force field as in our 
previous studies of HMX.1-4  The development7 and 
implementation1 of the force field are described 
elsewhere.  We note that our simulations include all 
degrees of freedom other than covalent bond 
stretching motions, which were constrained to 
equilibrium values using the SHAKE8 algorithm.   



  Primary simulation cells containing 48 and 96 
molecules were used for β-HMX, corresponding to 
24 (4x2x3) and 48 (4x4x3) unit cells, respectively.  
Primary cells containing 64 and 96 molecules were 
used for α- and δ-HMX, corresponding to 8 
(2x1x4) and 16 (4x4x1) unit cells, respectively. 
Electrostatic interactions were treated using the 
standard Ewald summation.8 Non-bonded 
interactions were truncated at 10 Å. A fixed time 
step size of one fs was used in all cases.   
Equilibration runs of one ns duration were 
performed, followed by multi-nanosecond 
production runs during which data were collected 
for subsequent analysis.  All of the calculations 
were performed at T=295 K. 
 

DATA ANALYSIS 
 
  Rahman and Parrinello6 showed that the fourth-
rank elastic tensor for an anisotropic crystalline 
solid can be calculated directly from fluctuations of 
the microscopic strain tensor: 
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where V  is the average volume at a given 

temperature T.  The instantaneous strain tensor is 
given by 
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where h is the matrix that transforms between 
Cartesian and scaled coordinates, superscript T 
denotes matrix transpose, and h0 is the reference 
state of the system at a given p-T state, 
corresponding to the average volume and shape.  
Equation (2) is readily constructed from a suitably 
large set of observations from a molecular 
dynamics trajectory. 
  The fourth-rank elastic tensor C can be expressed 
in second-rank form through the use of Voigt 
notation.  The particular form for C is determined 
by the symmetry class for a given crystal (e.g., 
monoclinic, orthorhombic, and hexagonal for β-, α- 
and δ-HMX, respectively). 

  Two experimental studies of the isothermal 
compression of β-HMX have been reported.9,10 In 
both cases, the compression data were used in 
conjunction with equation of state fitting forms for 
p=p(V;T)  to extract values for the initial bulk 
modulus K and its pressure derivative K'.  Olinger, 
Roof, and Cady9 used a fitting form  
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based on the hugoniot jump conditions in the 
pseudo-(Us,Up) plane, where for a linear relation  
 

Us=c+sUp; ρKc = ; ( ) 4/1+′= Ks .   (4) 

 
Yoo and Cynn10 used the third order Birch-
Murnaghan equation of state 
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where η=V/V0.  We have applied both of these 
fitting forms to our simulated compression data for 
β-HMX, for comparison of the resultant values of K 
and K' to experiment as well as to values of K 
derived directly from the elastic tensor.  (A recent 
re-analysis of both sets of experiments and fittings 
forms is presented elsewhere.11) 
 

RESULTS AND DISCUSSION 
 

Elastic Tensors for the Polymorphs 
 
  The calculated elastic tensor for β-HMX is 
depicted in Fig. 1, for primary simulation cells 
containing N=48 and 96 molecules.12  A partial 
experimental determination for β−HMX has been 
reported by Zaug;13 those results are also included 
in Fig. 1.14 The coefficients C11, C33, C55, C15, and 
C35 were well determined in Zaug’s experiment; 
thus, the comparison between our results and his is 
most meaningful for those cases.  Specific values of 
the thirteen elastic coefficients for β-HMX, N=96, 
are (GPa): C11=19.4, C22=17.5, C33=17.8, C44=9.1, 
C55=9.2, C66=9.8, C12=5.9, C13=8.4, C23=8.2, C15=-1.1, 
C25=3.2, C35=0.2, and C46=2.4.   
  The nine elastic coefficients for α-HMX are: C11=30.3, 
C22=22.7, C33=29.9, C44=0.6, C55=3.1, C66=2.9, C12=5.3,  



 
FIGURE 1. Elastic coefficients for β-HMX. 
 
C13=12.0, and C23=5.2.  The five independent elastic 
coefficients for δ-HMX are: C11=14.5, C33=18.3, C44=4.7, 
C12=9.1, and C13=10.5; the four remaining ones are 
defined by symmetry, namely: C22=C11, C55=C44, C66= 
C11-C12, and C23= C13.   
  Effective bulk and shear moduli, K and G, can be 
derived from the elastic tensor.  Voigt average 
values of these parameters are (K,G)=(11.1, 7.8), 
(14.2, 5.3), and (11.1, 4.1) GPa for β- (N=96), α-, 
and δ-HMX, respectively.  It is of interest that, 
while the predicted values of K for β- and δ- are 
equal, the value of G for δ is only about half as 
large as for β.   
 

Isothermal Compression Curve Fits 
 
  Simulated and measured compression curves for 
β-HMX are shown in Fig. 2.  The agreement 
between experiment and simulation is qualitatively 
good, though not quantitatively correct: at the 
highest pressure considered here, 10.6 GPa, the 
percent difference between our compression ratio 
V/V0 and that of Yoo and Cynn is 4.6%. (Note that 
there is also noticeable disagreement between the 
two experiments.)  Overall, the simulation results 
are in better accord with the data of Olinger et al. 
than with that of Yoo and Cynn.   
  Equation 4 is trivially linear in c and s.  Equation 6 
can be expressed as a linear function with axes 
x=[η-2/3-1]-1-3 and y=2p(V){3[η-7/3-η-5/3][η-2/3-1]}-1, 
for which the slope and intercept are K and 3KK'/4, 
respectively.  We fit our compression curve results 
to both Eq. 5 and 6, for three intervals: p ≤ 1 GPa, p 
≤ 10.6 GPa, and 1 GPa ≤ p ≤ 10.6 GPa; we als o fit  

 
FIGURE 2.  Compression curves for β-HMX.  Simulation 
results correspond to N=96; “Olinger et al.” and “Yoo & Cynn” 
refer to Refs. 9 and 10, respectively. 
 
the results in the Us-Up plane to a quadratic 
function on each of these intervals.  Of the nine fits, 
seven were quite good (R2≥0.998), one was 
acceptable (R2=0.98), and one was poor (R2=0.24, 
corresponding to a quadratic fit of Eq. 5 for p≤1 
GPa; henceforth ignored).   
 

Comparisons Among the Results 
 
  The results are collected in Fig. 3, where we also 
include the conclusions from a recent re-analysis of 
the experimental data (Ref. 11, Table 1).  A number 
of points are immediately obvious.  (1) The values 
of both K and K' span large ranges: ~10-17 GPa for 
K and ~4-18 for K'.  (2) Values of K and K' 
extracted from EOS fits to the simulation data are 
consistent with the experiments.  (3) Us-Up fits to 
the experimental data sets yield smaller error bars 
than do the Birch-Murnaghan ones.  (4) Most 
interestingly, the value of K predicted from the 
elastic tensor, 11.1 GPa, is significantly lower than 
the cluster of values obtained from equation of state 
fits to the compression results.   
  It is important to understand the cause for the 
discrepancy between the tensor-derived and fitted 
values of K from the simulation data.  There are a 
number of possible explanations.  Finite-size effects 
may be a factor, although examination of Fig. 1 
does not support this conclusion (unless quite large 
simulations are required to reveal the problem).  
Simulations for both larger and smaller primary 
cells are underway.   



 

 
FIGURE 3.  Summary of predicted and measured values of K 
and K' for β-HMX.  Us-Up and B-M denote hugoniot and Birch-
Murnaghan fitting forms, respectively.  Points with K'=0 
correspond to cases where no values are available [NpT-MD 
(Cij)] or for which an aphysical value (K'<0) was obtained from 
the fit [NpT -MD (B-M), for the specific case p≤1 GPa]. 
 
  Another potential source of difficulty is the 
necessity to choose a value of the effective “cell 
mass” that controls the strength of the coupling of 
the lattice degrees of freedom to the barostat in the 
NpT-MD algorithm.  We have chosen a value of 
w=8.0x10-4 fs-1 for the simulations discussed here.  
In order to test the effect of large changes in the 
coupling parameter, we performed a simulation 
using a trial value wt=1.2x10-3 fs-1 (wt/w=3/2).  The 
first moment <V> of the distribution is unaffected 
by the change, whereas, for the simulation times τw 
=5.0 ns and τwt=2.5 ns considered, the second 
moment (variance) does differ somewhat.  The bulk 
modulus is given in terms of volume fluctuations by 
K=σV

2[<V>κT]-1, which yields Kw=11.3 GPa and 
Kwt=14.6 GPa.  (Note that the former value agrees 
well with the prediction for the elastic tensor, 
providing a cross check of the correctness of that 
calculation.)   
  Given this practical sensitivity to a somewhat 
“arbitrary” parameter, we have undertaken a series 
of calculations based on a hybrid NpT-MD/Monte 
Carlo scheme in which volume/shape changes in 
the system are sampled using Monte Carlo, thereby 
eliminating the barostat parameter, while canonical 
ensemble NVT-MD trajectory segments are used to 
explore phase space for a given system volume and 
shape. 
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in a right-handed cartesian frame (Fdd2 spacegroup).  For 
β-HMX, a is directed along x̂ , b is along ŷ , and c is in 
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